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Natural water sources are often contaminated with heavy metal
ions generated by various industrial processes.1-3 In particular, vast
amounts of highly toxic waste containing Cr6+ are being generated
and discarded worldwide by industries associated with chrome
plating, metal finishing, pigment manufacturing, and leather tan-
ning.3 Cr6+ is strongly oxidizing and carcinogenic.4 Although
several sophisticated techniques are available to detect and quantify
Cr6+,5 a selective, cost-effective sensor system with minimum
requirements for sample preparation is highly desirable. Alternative
approaches are rare.6 Cr6+ undergoes reduction in solution in the
presence of H+ and low-valent metal centers such as Fe2+, Mn2+,
V3+, or Os2+.7 For example, [Os(bpy)3]Cl2 reacts with K2Cr2O7 in
water under acidic conditions (pH) 1) to afford Cr3+, as judged
by ESR spectroscopy. Monolayer chemistry is rapidly developing,8-10

and such, well-designed interfaces have been used to detect various
analytes.9,10However, the design of a suitable platform for detecting
specific metal ions in a matrix remains a challenging task.9a,11We
present here the selective optical detection and parts per million
level quantification of Cr6+ in acidic H2O and MeCN using known
1-based monolayers on float glass substrates.9 The highly stable
sensor system can be readily regenerated by washing with water
(neutral pH), and it exhibits excellent selectivity toward Cr6+.

Trace amounts of Cr6+ in aqueous or organic solutions can be
detected in situ by monitoring the optical properties of the1-based
monolayer by UV/vis spectroscopy in the transmission mode (260-
800 nm). K2Cr2O7 has been used as the Cr6+ source in all
experiments. For example, immersing a1-based monolayer on glass
(0.8 × 2.5 × 0.1 cm) in an acidified MeCN solution containing
0.5 ppm Cr6+ results in a significant decrease of the absorption
band atλ ) 293 nm, both singlet and triplet states of metal-to-
ligand charge-transfer (MLCT) bands atλ ) 516 and 692 nm, and
a concurrent increase of the ligand-to-metal charge-transfer (LMCT)
band atλ ) 317 nm (Figure 1A). Saturation of the sensor occurred
under these reaction conditions after 45 min (Figure 1A, inset).
The 1-based monolayer is stable in H2O at pH ) 1 for at least
several hours in the absence of Cr6+, as judged by UV/vis
spectroscopy.

Remarkably, the amount of Cr6+ can also be accurately quantified
within only 1 min of exposure time. A representative calibration
curve of the1-based monolayer with a series of aqueous Cr6+-

containing solutions (1-60 ppm; pH) 1) is shown in Figure 1B.
The good linear correlation and the system stability allow reliable
and accurate quantification of Cr6+. For instance, a blind test showed
that, even after several weeks in air, the calibrated1-based sensor
can be used to determine the amount of Cr6+ within 10% accuracy
(Figure 1B, solid circle). The detection range in H2O and MeCN
is 1-100 and 0.5-100 ppm, respectively. Reduction of the Os3+

system by water completely restores the MLCT bands atλ ) 516
and 692 nm to their original values (Figure 2).9a-c,12

The surface-solution redox chemistry is dependent on the pH
and shows good reversibility for at least 10 redox cycles, as shown
in Figure 2A. Ex situ UV/vis follow-up experiments demonstrate
that the system only responds to the analyte at a pH< 3 for a 1
min exposure time (Figure 2B). The highest oxidation rate is
observed at pH) 0.3. Interestingly, reduction of the sensor with
H2O is pH-dependent, as well. The maximum reduction rate was
observed at pH) 7.5, whereas at pH) 1, hardly any reaction is

Figure 1. (A) Absorption changes of the1-based monolayer immersed in
an acidified MeCN solution (pH) 1) containing 0.5 ppm Cr6+ at 4, 6, 10,
16, and 45 min, respectively. The inset shows the absorption changes atλ
) 516 (9) R2 ) 0.990,λ ) 692 nm (b) R2 ) 0.997,λ ) 317 nm (2) R2

) 0.979, andλ ) 293 nm (1) R2 ) 0.850. (B) Absorption changes in
oxidation % after a 1 min exposure of the1-based monolayer to aqueous
solutions containing 0, 1, 5, 10, 25, and 50 ppm Cr6+ at pH) 1. The black
line represents a linear fit (R2 ) 0.996). The red dots show the results of a
blind test.

Figure 2. (A) Absorption spectra of a typical switching experiment where
the 1-based monolayer is oxidized for 1 min with an acidified MeCN
solution (pH< 1) containing 5 ppm Cr6+ and is subsequently reduced with
H2O within 3 min. (B) Absorption of the1-based monolayer atλ ) 516
nm after immersion for 1 min in an aqueous 100 ppm Cr6+ at different pH
values.
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observed. The monolayer setup becomes unstable at higher pH
values, which is common for siloxane-based monolayers.13

The selectivity of the1-based monolayer toward Cr6+ was
demonstrated using a series of aqueous matrices containing various
metal ions (e.g., alkali, alkaline earth, transition, etc.) or anions
commonly found in groundwater (Figure 3).1 Only samples
containing Cr6+ induced significant optical changes (∆A g 60%)
after a 1 min exposure time.

We recently reported the optical sensing of Fe3+ in H2O and
MeCN by the1-based monolayer (under neutral conditions).9a In
the absence of H+, the 1-based sensor does not respond to Cr6+

(Figure 2B, inset). Apparently, this dual sensor system is capable
of detecting a specific metal ion by varying the pH. Time-dependent
measurement of the oxidation of the1-based monolayer by aqueous
solutions containing 80 ppm Fe3+ or Cr6+ showed that the optical
response of the sensor toward the latter ion is at least 6-fold greater
within 1 min of exposure time (see Supporting Information).
Moreover, Fe3+ can selectively be removed from the medium by
treatment with strong base prior to analysis of the Cr6+ content by
the 1-based monolayer (Figure 3, entry h). Cr6+ is stable under
basic conditions.6d

The formation of device quality sensors requires the ability to
detect analytes not only under controlled laboratory conditions but
also under environmental conditions. Indeed, the1-based monolayer
has also been used to detect Cr6+ in environmental samples. Water
from a fishing pond and playground sand samples were collected
and analyzed with and without the addition of parts per million
levels of Cr6+. The Cr6+ was extracted from the sand with water.
All water samples were acidified to pH) 1. Only contaminated
samples gave positive responses (Figure 4).

In summary, we have shown that the1-based monolayer is able
to detect and quantify traces of Cr6+ in H2O and MeCN under acidic
conditions. The measurements are relatively fast (1 min) and can

be carried out under environmental conditions without any sophis-
ticated sample treatment. The redox processes with the surface-
confined complex1 are fully reversible and can be monitored in
and ex situ using standard UV/vis spectroscopy (260-800 nm).
The system is stable up to 200°C in air for 48 h.9a,cThe combined
physicochemical properties and device performance of the1-based
monolayer, including robustness, regeneration, response time,
stability, selectivity, as well as the low detection limits, may make
this system an excellent alternative for detecting and quantifying
Cr6+.
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Figure 3. Relative oxidation change of the1-based monolayer atλ ) 516
nm, after immersion in aqueous matrices containing 5× 10-4 M of each
of the following metal salts, with (row 1, red) and without (row 2, blue)
100 ppm Cr6+: (a) HgCl2, ZnCl2, CuCl2, CoCl2, MnCl2, and NiCl2; (b)
MgCl2, BaCl2, and CaCl2; (c) KCl, NaCl, CsCl, and LiCl; (d) LaCl3, Al-
(NO3)3, and CdSO4; (e) NaNO3, Na2SO4, Na2SO3, KH2PO4, and KBr; (f)
Pb(NO3)2 and NaNO2; (g) FeCl3; (h) FeCl3 after sample treatment with a
strong base to selectively remove Fe3+.

Figure 4. Optical response, expressed in oxidation %, of the1-based
monolayer atλ ) 516 nm after immersion for 1 min in pond water (blue)
and sand-extracted water (red) under acidic conditions (pH) 1). Entries 1
and 2 contain pond water with and without acid added to the sample. Entries
3 and 4 contain 5 and 10 ppm Cr6+, respectively, with the same amount of
acid, except for a 2 min response time, whereas entry 5 contains 100 ppm
Cr6+. Entries 6 and 7 contain water from the sand extraction, with and
without acid added to the sample. Entries 8 and 9 were taken from the
sand+ Cr6+ extraction, in which the latter was acidified (pH) 1).
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